relative efficiencies of some alternative procedures IN TWO-STAGE SAMPLING ON SUCCESSIVE OCCASIONS

O.P. Kathuria and D. Singh
Institute of Agricultural Research Statistics, New Delhi

Introduction

In repeat sample surveys, the techniques developed by Yates (1960), Patterson (1950), Eckler (1955) and others for single-stage sampling design were extended to two-stage sampling by Kathuria (1959), and Singh and Kathuria (1969). Singh (1968), for sampling on three occasions, obtained estimates of mean for the current occasion as well as an overall estimate of mean for the three occasions. Tikkiwal (1964) extended the covariance conditions developed by Patterson and Eckler to two-stage sampling design.

With a two-stage sampling design, partial replacement of units from the sample drawn on the previous occasion can be done in three ways :
(i) Retain only a fraction p of the primary sampling units (psu's) with their samples of second stage units (ssu's) and select a fraction q of psu's ($q+p=1$) afresh,
(ii) retain all the psu's from the preceding occasion but from each psu retain only a fraction p of the ssu's within them and select a fraction q of ssu's afresh,
(iii) retain a fraction p of the psu's and from each such psu, retain only a fraction r of the ssu's and select a fraction s of the ssu's afresh $(r+s=1)$.

Sampling patterns (i) and (ii) have been discussed by Singh and Kathuria (1969) and estimates of mean and variances of the estimates were obtained. Abraham et al (1969) obtained estimates of mean on the second occasion and of the change and the variances of these estimates using sampling pattern (iii).

In the present investigation we shall examine the relative efficiencies of the estimates obtained under the three sampling patterns given above. We shall also examine the relative efficiencies of some alternative replacement procedures when sampling is carried on to three occasions.
2. Sampling patterns (i) and (ii)

Estimate of mean on the current occasions

2.1. Let there be a population π consisting of N psu's wherein each psu consists of M ssu's. Let $y_{k l}^{(i)}$ be the value of the l-th ssu in the k-th psu drawn on the i-th
occasion $(i=1,2, \ldots h ; k=1,2, \ldots N ; l=1,2, . . M)$. We are required to estimate the population mean $\bar{Y}^{(h)}$, where

$$
\bar{Y}^{(h)}=\frac{1}{N M} \sum_{k=1}^{N} \sum_{l=1}^{M} y_{k l}^{(h)}
$$

Define

$$
S_{b}^{2(i)}=-\frac{1}{(N-1)} \sum_{k=1}^{N}\left(\bar{Y}_{k .}^{(i)}-\bar{Y}_{. \cdot}^{(i)}\right)^{2}
$$

as the mean square between the psu means in the population on the i-th occasion,

$$
S_{w}^{2(i)} \varpi \frac{1}{N(M-1)} \sum_{k=1}^{N} \sum_{l=1}^{M}\left(y_{k l}^{(i)}-\bar{Y}_{k .}^{(i)}\right)^{2}
$$

as the mean square between ssu's within psu's in the population on the i-th occasion ($i=1,2, \ldots h$),

$$
\rho_{b}^{(i, j)} S_{b}^{(i)} S_{b}^{(j)}=\frac{1}{(N-1)} \sum_{k=1}^{N}\left(\bar{Y}_{k .}^{(i)}-\bar{Y}_{\ldots}^{(i)}\right)\left(\bar{Y}_{k .}^{(j)}-\bar{Y}_{\ldots}^{(j)}\right)
$$

as the covariance between psu means in the population on the i-th and j-th occasions and

$$
\rho_{w}^{(i, j)} S_{w}^{(i)} S_{w}^{(j)} \square \frac{1}{N(M-1)} \sum_{k=1}^{N} \sum_{l=1}^{M}\left(y_{k l}^{(i)}-\bar{Y}_{k .}^{(i)}\right)\left(y_{k l}^{(j)}-\bar{Y}_{k}^{(j)}\right)
$$

as the covariance between ssu's within psu's on the i-th and j-th occasions $(i \neq j=1,2, \ldots h)$. For simplicity, we may assume N and M to be large such that terms of the order $\frac{1}{N}$ and $\frac{1}{M}$ are ignored. Further, we may assume that

$$
S_{b}^{(i)}=S_{b}^{(j)}=S_{b} \text { and } S_{w}^{(i)}=S_{w}^{(j)}-S_{w}
$$

We also assume that

$$
\rho_{b}^{(i, j)}=\rho_{b}^{|i-j|} \text { and } \rho_{w}^{(i, j)}=\rho_{w}^{|i-j|}
$$

for all

$$
i \neq j=1,2, h
$$

Also we write

$$
S_{b}^{2}+\frac{S_{w}^{2}}{m}=\alpha, \rho_{b} S_{b}^{2} \dashv \rho_{w} \frac{S_{w}^{2}}{m} \doteq \gamma .
$$

Let the sample size on any occasion consist of n psu's each of them consisting of m ssu's. Let the sample size on the h-th occasion consist of $n p$ psu's with their samples of ssu's retained from the total sample drawn on the preceding occasion and $n q$ psu's selected afresh from the population $(q+p=1)$.

Let $\bar{y}_{1}^{-(h-1)}, \bar{y}_{1}^{(h)}$ and $\bar{y}_{2}^{(h-1)}, \quad \bar{y}_{2}^{(h)}$ denote the means on the $(h-1)$-th and h-th occasions based on npm and nqm units respectively. Using sampling pattern (i), Singh and Kathuria (1969) obtained the following estimate of $\bar{Y}(h)$.

$$
\begin{equation*}
\dot{\bar{y}}_{(h)}=c_{h}\left\{\bar{y}_{1}^{(h)}+\frac{\gamma}{\alpha}\left(\bar{y}^{(h-1)}\right)\right\}+\left(1-c_{h}\right) \bar{y}_{2}^{(h)} \tag{2.1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{h}=\frac{p}{\left[1-\frac{\gamma^{2}}{\alpha^{2}}(q-p)-p c_{h-1}\right.} \frac{\left.\frac{\gamma^{2}}{\alpha^{2}}\right]}{} \tag{2.1.2}
\end{equation*}
$$

and $c_{1}=p$. The variance of the estimate $\bar{y}_{(m)}$ is given by

$$
\begin{equation*}
V\left(\bar{y}_{(h)}\right)=\left(1-c_{h}\right) \frac{\alpha}{n q} \tag{2.1.3}
\end{equation*}
$$

Similarly, using sampling pattern (ii), the estimate for $\bar{y}^{(h)}$ is given by

$$
\begin{equation*}
E_{(h)}=\dot{g}_{h}\left\{\bar{y}_{1}^{(h)}+\rho_{w}\left(\bar{y}^{(h-1)}\right)-\bar{y}_{1}^{(h-1)}\right\}+\left(1-g_{h}\right) \bar{y}_{2}^{(h)} \tag{2.1.4}
\end{equation*}
$$

and its variance is given by

$$
\begin{equation*}
V\left(E_{(h)}\right)=\frac{S_{b}^{2}}{n}+\left(1-g_{h}\right) \frac{S_{w}{ }^{2}}{n m q} \tag{2.1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{h}=\frac{p}{\left[1-(q-p) \rho_{w}^{2}-p g_{h-1} p_{w}^{2}\right]} \tag{2.1.6}
\end{equation*}
$$

g_{1} being equal to p.
Kathuria and Singh (1970) have examined the relative efficiency of the estimate obtained under sampling pattern (ii) in relation to the estimate obtainedunder sampling pattern (i) for $h=2,3,4$ and 5 for a set of values of

$$
\rho_{b}, \rho_{w}, \phi\left(=\frac{S_{w}{ }^{2}}{S_{0}^{2}}\right) \text { and } q
$$

3. Sampling pattern (iii)

Estimate of mean on the second occasion

Suppose now that on the second occasion a fraction p of the n psu's and in each of $n p$ psu's, a fraction r of the ssu's were retained. The remaining units, viz., $n q$ psu's and $m s$ ssu's in each of $n p$ psu's were replaced by the units selected afresh on the second occasion. Let
$\begin{aligned} \bar{y}_{1}{ }^{\prime}= & \text { mean per ssu on the first occasion based on } n p m r \text { units which are } \\ & \text { common to two occasions, }\end{aligned}$
$\bar{y}_{2}{ }^{\prime}=$ mean per ssu based on common units on the second occasion
$\bar{y}_{1}{ }^{\prime \prime}=$ mean per ssu on the first occasion based on npms units taken from common psu's on both occasions,
$\bar{y}_{2}{ }^{\prime \prime}=$ mean per ssu based on these units on the second occasion,
$\bar{y}_{1}{ }^{\prime \prime \prime}=$ mean per ssu on the first occasion based on nqm units which are in the sample on the first occasion only,
$\bar{y}_{2}{ }^{\prime \prime \prime}=$ mean per ssu on the second occasion based on nqm units selected afresh on the second occasion.

Consider first the $n p$ common psu's. In each of these psu's, a fraction r of the ssu's were retained and a fraction s were selected afresh on the current occasion. Proceeding as in (2.1.4) to (2.1.6) in section 2.1 above, we may write an estimate of \bar{y}_{2}, denoted by $\bar{y}_{2 c}$ and variance of the estimate based on common psu's by replacing p and g by r and s respectively. These are given by

$$
\begin{equation*}
\bar{y}_{2 c}=g_{2}\left\{\bar{y}_{2}^{\prime}+\rho_{w}\left(\bar{y}_{10}-\bar{y}_{1}^{\prime}\right)\right\}+\left(1-g_{2}\right) \bar{y}_{2}^{\prime \prime} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(\bar{y}_{2 c}\right)=\frac{S_{b}^{2}}{n p}+\left(1-g_{2}\right) \frac{S_{w}^{2}}{n p m s} \tag{3.2}
\end{equation*}
$$

where

$$
g_{2}=\frac{r}{\left(1-P_{\underline{t}}{ }^{2} s^{2}\right)}
$$

and $\bar{y}_{1 c}$ is the mean per ssu on the first occasion based on $n p$ psu's common to the two occasions.

Abraham et al (1969) obtained an unbiased estimate based on all the units on the second occasion given by

$$
\begin{equation*}
\bar{y}_{w}=f_{2} \bar{y}_{2 c}+\left(1 \cdots f_{2}\right) \bar{y}_{2}^{\prime \prime \prime}+f_{2}^{\prime}\left(\bar{y}_{1 c}-\bar{y}_{1}^{\prime \prime \prime}\right) \tag{3.3}
\end{equation*}
$$

where f_{2} and f_{2}^{\prime} are constants chosen in a way such that $V\left(\bar{y}_{w}\right)$ is minimum and $\vec{y}_{2 c}$ is as defined above. The values of f_{2} and f_{2}^{\prime} are given by
where

$$
\begin{gathered}
f_{2}=\left[\alpha \left\{S_{\left.\left.b^{2}+\left(\left(1-g_{2}\right)+p s\right) \frac{S_{w}^{2}}{m s}\right\}-\beta^{2} q^{2}\right]}\right.\right. \\
f_{2}^{\prime}=-\frac{q \beta}{\alpha} f_{2},
\end{gathered}
$$

$$
\beta \doteq \rho_{b} \dot{s}_{b}^{2}+g_{2} \rho_{w} \frac{s_{w}^{2}}{m}
$$

α and γ are as already defined above.
The variance of the estimate \bar{y}_{w} is given by

$$
V\left(\bar{y}_{w}\right)=\left(1-f_{2}\right) \frac{\alpha}{n q}
$$

It would be interesting to compare the estimate \bar{y}_{w} with the two estimates obtained under sampling patterns (i) and (ii) above. This would be done by working out the efficiency of \bar{y}_{w} with respect to \bar{y}_{2} and E_{2} for different values of the paramsters involved. Tables 1 and 2 give the relative efficiency of \bar{y}_{w} in relation to the estimates \bar{y}_{a} and E_{2} respectively.

4. Sampling for three occasions-estimates of mean on the current occasion

When sampling is carried on to three occasions, then with the sampling pattern on the second occasion being as given in section 3 above, Kathuria (1970) considered three different sampling patterns for selection of psu's and ssu's on the third occasion. Briefly, the three sampling patterns are follows :-

Sampling Pattern I:

Time	1	XXX	XXXX			XXXXX		
Time	2	XXX		XXXX			XXXXX	
Time	3	XXX			XXXX			XXXXX
am	ction	npmr	npms	npms	npms	$n q m$	$n q m$	$n q m$

Sampling Pattern II :

Time	1	XXX	XXXX		XXXXX		
Time	2	XXX		XXXX			XXXXX
Time	3	XXX		XXXX			XXXXX
Sample fraction	$\dot{n} p m r$	$n p m s$	$n p m s$	$n q m$	$n q m$	$n q m$	

Sampling Pattern III :

Time	1	XXX XXXX		XXXX		
Time	2	XXX	XXXX		XX	XXX
Time	3					XX

Sample fraction npmr npms npms nqms nqmr nqms nqms nqm.
Under sampling pattern I , the same sample consisting of $n p m r$ units is retained for all the three occasions, the remaining units are selected afresh each time. Under sampling pattern II, while only npmr units are retained from first occasion to the second, all the np psi's with their sample of ssin's are retained from second occasion to the third. Under sampling pattern III, only npmr units are kept common between first two occasions and only hqmr units are kept common between the second and the third occasion.

Unbiased estimates of the population mean \vec{Y}_{3} on the third occasion and their variances were obtained for each of the three sampling patterns. Without
going into complicated algebra, we shall only write the expressions for various estimators and their variances under each of the three sampling patterns.

Sampling Pattern \mathbf{I} :

Let $\bar{y}_{1}{ }^{\prime}, \bar{y}_{1}{ }^{\prime \prime}, \bar{y}_{1}{ }^{\prime \prime \prime}$ and $\bar{y}_{2}{ }^{\prime}, \overline{\boldsymbol{n}}_{4}{ }^{\prime \prime}, \bar{y}_{2}{ }^{\prime \prime \prime}$ be the sample means as defined in section 3 above and let the corresponding sample estimates on the third occasion be denoted by $\bar{y}_{3}{ }^{\prime}, \bar{y}_{3}{ }^{\prime \prime}, \bar{y}_{3}{ }^{\prime \prime \prime}$. We define by $\bar{y}_{3}{ }^{(1)}$ as the unbiased estimate of \bar{y}_{3} under sampling pattern I.

Estimate :

$$
\begin{equation*}
\left.\bar{y}_{3}{ }^{(1)}=f_{3} \bar{y}_{3 c}{ }^{(1)}+\left(1-f_{3}\right) \bar{y}_{3}{ }^{\prime \prime \prime}+f_{3}^{\prime \prime} \bar{y}_{3}-\bar{y}_{2}{ }^{\prime \prime \prime}\right) \tag{4•1}
\end{equation*}
$$

where $\bar{y}_{3 c}{ }^{(1)}$ and its variance are obtained in a similar manner as given in (3.1) and (3:2) above and $g_{3}=\frac{r}{\left[1-(s-r) \rho_{w}{ }^{2}-r g_{2} \rho_{w}{ }^{2}\right]}$. The values of f_{3} and $f_{3}{ }^{\prime}$ obtained by minimising the variance of $\bar{y}_{3}^{(1)}$ are given by

$$
\begin{aligned}
& f_{3}=\frac{p^{2} \alpha^{2}}{\left[p \alpha\left\{s_{b}^{2}+\left(p s+\left(1-g_{3}\right) q\right) \frac{s_{w}^{2}}{m s}\right\}-f_{2} q^{2}\left\{\left(\rho_{b} s_{b}^{2}+\left(1-g_{2}\right) g_{3} \rho_{w} \frac{s_{w}{ }^{2}}{m s}\right)\right.\right.} \\
& \left.\left.-\quad-\frac{q \beta}{\alpha}\left(\rho_{b}{ }^{2} s_{b}^{2}+g_{2} g_{3} \rho_{w}{ }^{2} \frac{s_{w}^{2}}{m}\right)\right\}^{2}\right]
\end{aligned}
$$

and

$$
f_{3}^{\prime}=-\frac{q \alpha}{p} f_{3}\left[\left(\rho_{b} s_{b}^{2}+\left(1-g_{2}\right) g_{9} \rho_{w} \frac{s_{w}{ }^{2}}{m s}\right)-\frac{q \beta}{\alpha}\left(\rho_{b}{ }^{2} s_{b}{ }^{2}+g_{2} g_{3} \rho_{w}{ }^{2} \frac{s_{w}{ }^{2}}{m}\right)\right]
$$

variance of $\bar{y}_{3}^{(1)}$:

$$
V\left(\bar{y}_{3}^{(1)}\right)=\left(1-f_{3}\right) \frac{\alpha}{n q}
$$

Sampling Pattern II :

Estimate :
The estimate based on sampling pattern II may be written as

$$
\begin{equation*}
\bar{y}_{3}^{(2)}=k_{3} \bar{y}_{3 c}^{(2)}+\left(1-k_{3}\right) \bar{y}_{3}^{\prime \prime \prime}+k_{3}^{\prime}\left(\bar{y}_{2}-\bar{y}_{2}^{\prime \prime \prime \prime}\right) \tag{4*3}
\end{equation*}
$$

where $\bar{y}_{3 c}^{(2)}$ is an estimate based on common psu's between the second and the third occasions and is given by

$$
\bar{y}_{3}^{(2)}=h_{3} \bar{y}_{3}^{\prime}+\left(1-h_{3}\right) \bar{y}_{3}^{\prime \prime}+j_{3}\left(\bar{y}_{2 c}-\bar{y}_{2}^{\prime \prime}\right),
$$

h_{3} and j_{3} obtained by minimising $V\left(\bar{y}_{3 c}^{(2)}\right)$ are given by

$$
\begin{aligned}
h_{3} & =\frac{r\left(1-\rho_{w}{ }^{2}\right)}{\left(1-\rho_{w}{ }^{2}+\rho_{w}^{4} s^{2}\right)}, \\
j_{3} & =\frac{\rho_{w}{ }^{3} s^{2}}{\left(1-\rho_{w}{ }^{2}+\rho_{w}{ }^{4} s^{2}\right)}
\end{aligned}
$$

and $\bar{y}_{2 c}, \bar{y}_{2}$ are as defined above.
The values of k_{3} and $k_{3}{ }^{\prime}$, obtained by minimising $V\left(\bar{y}_{3}^{(2)}\right)$ are given by

$$
\begin{aligned}
&\left.k_{3}=\frac{p^{2} \alpha^{2}}{\left[p \alpha \left\{s_{b}{ }^{2}+\left(\frac{h_{3} q+p r}{r}+\frac{\left(1-g_{2}\right) j_{3} \rho_{w} q}{s}\right)\right.\right.} \frac{s_{w}^{2}}{m}\right\}-f_{8} q^{2}\left\{\left(1-\frac{q \beta}{\alpha} \rho_{b}\right) \rho_{b} s_{b}^{2}\right. \\
&\left.\left.+\left(\frac{1-g_{9}}{s}-\frac{q \beta}{\alpha}\left(h_{3} \rho_{1}+j_{3} g_{2}\right)\right) \rho_{w} \frac{s_{w}{ }^{2}}{m}\right\}^{2}\right]
\end{aligned}
$$

and

$$
k_{3}^{\prime}=\frac{-q k_{3}}{p \alpha}\left[\left(\rho_{b}-\frac{q \beta}{\alpha} \rho_{b}^{2}\right) s_{b}{ }^{2}+\left\{\frac{1-g_{2}}{s}-\frac{q \beta}{\alpha}\left(h_{3} \rho_{w}+j_{3} g_{2}\right)\right\} \rho_{w} \frac{s_{w}{ }^{2}}{m}\right]
$$

Variance of $\mathbf{y}_{3}^{(2)}$:

$$
\begin{equation*}
V\left(\bar{y}_{3}^{(2)}\right)=\left(1-k_{3}\right) \frac{\alpha}{n q} . \tag{4•4}
\end{equation*}
$$

Sampling Pattern III :

Under sampling pattern III, there are $n q$ psu's common between the second and the third occasion. Further, within each of these $n q$ psu's on the third occasion, $m r$ ssu's are retained from the second occasion and $m s$ ssu's are selected afresh $(r+s=1)$. A fresh sample of $n p$ psu's and within each of the $n p$ psu's a sub-sample of m ssu's is selected afresh without replacement from the population on the third occasion such that $p+q=1$.

Now let
$\bar{y}_{2}^{\prime(3)}=$ mean per ssu on the second occasion based on nqmr units which are common with"the third occasion,
$\bar{y}_{3}^{\prime(3)}=$ mean per ssu based on these units on the third occasion,
$\bar{y}_{2}^{\prime \prime}{ }^{(3)} ص$ mean per ssu on the second occasion based on nqms units not common wiṭ thịrd occasion,
$\bar{y}_{3}^{\prime \prime(3)}=$ mean per ssu based on nqms units on the third occasion, $\bar{y}_{2}^{\prime \prime \prime(3)}=$ mean per ssu on the second occasion based on npm units, $\bar{y}_{3}^{\prime \prime \prime}(3)=$ mean per ssu on the third occasion based on npm units.

The sample mean $\bar{y}_{2}{ }^{\prime \prime \prime}$ based on $n q m$ units on the second occasion may also be written as $\bar{y}_{2}^{\prime \prime \prime}=r \bar{y}_{2}^{\prime(3)}+s \bar{y}_{2}^{\prime \prime(3)}$.

Estimate :

Denoting by $\bar{y}_{3}^{(3)}$, the estimate based on sampling pattern III, we have

$$
\bar{y}_{3}^{(3)}=l_{3} \bar{y}_{3 c}^{(3)}+\left(1-l_{3}\right) \bar{y}_{3}^{\prime \prime \prime}{ }^{(3)}+l_{3}^{\prime}\left(\bar{y}_{2}^{\prime \prime \prime}-\bar{y}_{2}^{\prime \prime \prime}\right)
$$

where $\bar{y}_{3 c}^{(3)}$ is the estimate based on $n q$ psu's common between the second and the third occasion. The value of l_{3} and l^{\prime}, obtained by minimising $V\left(\bar{y}_{3}^{(3)}\right)$, are given by

$$
\begin{aligned}
& l_{3}=\frac{q \alpha^{2}}{\left[\alpha\left\{s_{b}^{2}+\left(q s+\left(1-g_{2}\right) p\right) \frac{s_{w}{ }^{2}}{m s}\right\}-p^{2}\left(\rho_{b} s_{b}{ }^{2}+\rho_{w} g_{2} \frac{s_{w}^{2}}{m}\right)^{2}\right]} \\
& l_{3}^{\prime}=\frac{-p l_{3}\left(\rho_{b} s_{b}^{2}+\rho_{w} g_{2} \frac{s_{w}{ }^{2}}{m}\right)}{\left(s_{b}{ }^{2}+\frac{s_{w}{ }^{2}}{m}\right)}
\end{aligned}
$$

Variance of $\bar{y}_{3}^{(3)}$:

$$
\begin{equation*}
V\left(\bar{y}_{3}^{(3)}\right)=\left(1-l_{3}\right) \frac{\alpha}{n p} . \tag{4.6}
\end{equation*}
$$

5. Relative efficiencies of different sampling patterns

It would be interesting to examine the efficiencies of the sampling pattern II and III in relation to sampling pattern I. Table 3 gives the relative efficiency of the estimate $\bar{y}_{3}^{(2)}$ w.r.t. the estimates $\bar{y}_{3}^{(1)}$ and Table 4 gives relative efficiency of the estimate $\bar{y}_{3}^{(3)}$ w.r.t. the estimate $\bar{y}_{3}^{(1)}$.

Under sampling pattern I, only npmr are common to all the three occasions, while under sampling pattern II, besides npmr units being common between first two
occasions, there are nym units common between second and third' occasions. The two sampling patterns were found to be equally efficient. Under sampling pattern III, there are no common units between first and the third occasion while nqmr units are common between second and the third occasion. This pattern was generally found more efficient than patterns I and II.

6. Summary

For sampling upto three occasions, using a two-stage sampling design three different sampling patterns have been examined with partial matching among psu's and ssu's. The relative efficiencies of the estimates obtained for second and the third occasion with different sampling patterns have been studied. It was observed that for sampling on two occasions, partial matching of units at both the stages [sampling pattern (iii)] is generally superior to matching among ssu's only [sampling pattern (ii)] and its relative efficiency increases'with increase in correlation between psu's. Further, partial matching at both stages was found to be as good as matching among psu's only [sampling pattern (i)], the relative efficiency gradually decreases as correlation between psu's increases. For sampling on three occasions, in order to estimate the mean on the current occasion, it is better to have partial matching with the immediately preceeding occasion only, i.e., sampling pattern (iii) is superior to the other two sampling patterns.

Table 1
Relative efficiency of the estimate $\overline{\mathbf{y}}_{w}$ w.r.t. the estimate $\overline{\mathbf{y}}_{2}$ for different values of $\rho_{b}, \rho_{w}, \phi, q$ and \mathbf{s} for $m=4$

ϕ	$q=0.5$											$q=0.75$									
	P_{b}	$s=0.5$					$s=0.75$					$s=0.5$					$s=0.75$				
		$\rho_{w}=0.0$	0.5	0.7	0.9	$1 \cdot 0$	0.0	$0 \cdot 5$	0.7	0.9	$1 \cdot 0$	0.0	0.5	0.7	0.9	1.0	$0 \cdot 0$	0.5	0.7	0.9	1.0
$0 \cdot 1$	0.0	$1 \cdot 00$	$1 \cdot 00$	1.00	$1 \cdot 00$	$1 \cdot 00$	$1 \cdot 00$	1.00	$1 \cdot 00$	1.00	$1 \cdot 00$	$1 \cdot 00$	1.00	1.00	1.00	$1 \cdot 00$	1.00	$1 \cdot 00$	$1 \cdot 00$	$1 \cdot 00$	$1 \cdot 00$
	0.5	1.00	$1 \cdot 00$	$1 \cdot 00$	$1 \cdot 00$	1.00	1.00	1.00	1.00	$1 \cdot 00$	1.00	1.00	1.00	$1 \cdot 00$	1.00	1.00	$1 \cdot 00$	1.00	1.00	1.00	1.00
	0.7	$1 \cdot 00$	$1 \cdot 00$	1.00	1.00	$1 \cdot 00$	1.00	1.00	$1 \cdot 00$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	$1 \cdot 00$	1.00	1.00	1.00	1.00
	0.9	$1 \cdot 00$	0.99	0.99	1.00	1.00	1.00	0.99	0.99	0.99	1.00	1.00	1.00	0.99	0.99	1.00					
	$1 \cdot 0$	1.00	0.99	0.99	1.00	1.00	1.00	0.99	0.99	0.99	$1 \cdot 00$	1.00	0.99	0.98	0.99	0.99	$1 \cdot 00$	0.98	0.97	0.98	$0 \cdot 99$.
1.0	$0 \cdot 0$	1.00	$1 \cdot 00$	$1 \cdot 01$	1.02	$1 \cdot 03$	$1 \cdot 00$	$1 \cdot 00$	$1 \cdot 01$	1.02	1.04	1.00	1.00	1.00	1.01	1.01	1.00	1.00	$1 \cdot 00$	1.01	1.02
	0.5	$1 \cdot 00$	0.99	1.00	$1 \cdot 01$	1.02	1.00	0.99	0.99	$1 \cdot 00$	1.03	1.00	0.99	0.99	1.00	1.00	1.00	0.99	0.98	0.99	1.00
	0.7	1.00	0.99	0.99	1.00	$1 \cdot 02$	$1 \cdot 00$	0.98	0.98	0.99	1.02	1.01	0.98	0.98	0.99	1.00	1.00	0.97	0.97	0.97	1.00
	0.9	1.00	0.98	0.98	0.99	1.01	$1 \cdot 00$	0.96	0.96	0.97	1.01	1.00	0.97	0.96	0.96	0.97	1.00	0.95	0.93	0.93	0.97
	$1 \cdot 0$	1.00	0.97	0.97	0.98	1.00	1.00	0.95	0.94	0.96	$1 \cdot 00$	$1 \cdot 00$	0.95	0.93	0.92	0.94	1.00	0.92	0.89	0.88	$0 \cdot 92$
10	$0 \cdot 0$	1.00	$1 \cdot 00$	1.01	1.04	1.08	1.00	0.99	0.99	$1 \cdot 03$	$1 \cdot 13$	$1 \cdot 00$	0.99	0.99	1.00	1.02	1.00	0.99	0.98	0.98	1.03
	0.5	1.00	0.99	0.99	1.02	1.07	$1 \cdot 00$	0.97	0.96	0.99	$1 \cdot 10$	1.00	0.98	0.97	0.96	0.98	1.00	0.97	0.94	0.93	0.98
	0.7	1.00	0.98	0.98	$1 \cdot 01$	1.06	$1 \cdot 00$	0.96	0.94	0.97	1.09	1.00	0.97	0.96	0.94	0.95	1.00	0.96	0.92	0.90	0.95
	0.9	1.00	0.97	0.97	0.99	1.05	$1 \cdot 00$	0.95	0.92	. $0 \cdot 95$	1.08	$1 \cdot 00$	0.97	0.94	0.91	0.90	1.00	0.95	0.90	0.86	$0 \cdot 90$
	$1 \cdot 0$	$1 \cdot 00$	$0 \cdot 97$	0.96	0.97	1.04	1.00	0.94	0.92	0.94	1.07	$1 \cdot 00$	0.96	0.93	0.88	0.87	1.00	0.94	0.89	0.83	0.86

Table 2.
Relative efficiency of the estimate $\overline{\mathbf{y}}_{\boldsymbol{w}}$ w.r.t. the estimate \mathbf{E}_{2} for different values of $\rho_{b}, \rho_{w}, \phi, q$ and \mathbf{s} for $\mathbf{m}=4$

Table 3
Relative efficiency of the estimate $\bar{y}_{3}(2)$ w.r.t. the estimate $\vec{y}_{3}(1)$ for different values of f_{b}, ρ_{w}, ϕ, q and s for $m=4$.

Table 4
Relative efficiency of the estimate $\bar{y}_{9}(3)$ w.r.t. the estimate $\bar{y}_{3}(1)$ for different values of p_{b}, p_{w}, ϕ, q and \boldsymbol{s} for $\mathbf{m}=4$

ϕ	$q=0.5$											$q \simeq 0.75$									
		$s=0.5$					$s=0.75$					$s=0.5$					$s=0.75$				
	Pb	$p_{w}=0.0$	0.5	0.7	0.9	$1 \cdot 0$	0.0	$0 \cdot 5$	$0 \cdot 7$	0.9	$1 \cdot 0$	0.0	0.5	0.7	0.9	$1 \cdot 0$	0.0	0.5	$0 \cdot 7$	0.9	$1 \cdot 0$
$0 \cdot 1$	0.0	1.00	$1 \cdot 00$	1.00	$1 \cdot 00$	0.99	1.00	1.00	1.00	$1 \cdot 00$	$0 \cdot 99$	$1 \cdot 00$	1.00	1.00	$1 \cdot 00$	1.01	$1 \cdot 00$	1.00	1.00	$1 \cdot 00$	1.01
	0.5	$1 \cdot 01$	$1 \cdot 01$	1.01	1.02	1.02	1.01	1.01	1.01	1.01	1.02	1.01	$1 \cdot 01$	1.02	$1 \cdot 01$	1.01	1.01	1.01	1.01	1.02	1.01
	0.7	1.05	$1 \cdot 06$	1.06	1.06	1.07	1.06	$1 \cdot 06$	1.06	1.06	1.07	1.04	1.04	1.04	$1 \cdot 04$	1.04	$1 \cdot 04$	$1 \cdot 04$	1-04	1.05	1.04
	0.9	$1 \cdot 18$	$1 \cdot 19$	1.20	$1 \cdot 20$	1.20	$1 \cdot 18$	$1 \cdot 19$	$1 \cdot 19$	$1 \cdot 20$	$1 \cdot 20$	$1 \cdot 11$	$1 \cdot 11$	1-12	$1 \cdot 12$	$1 \cdot 13$	$1 \cdot 12$	$1 \cdot 12$	1-12	$1 \cdot 12$	$1 \cdot 13$
	1.0	$1 \cdot 32$	$1 \cdot 34$	$1 \cdot 35$	$1 \cdot 34$	$1 \cdot 35$	$1 \cdot 32$	$1 \cdot 34$	$1 \cdot 34$	1-34	1.35	$1 \cdot 19$	$1 \cdot 20$	$1 \cdot 20$	1-21.	1.22	$1 \cdot 19$	$1 \cdot 20$	$1 \cdot 20$	$1 \cdot 21$	1-22
1.0	0.0	$1 \cdot 00$	$1 \cdot 00$	$1 \cdot 00$	0.99	0.98	1.00	$0 \cdot 99$	1.00	0.99	0.98	1.00	$1 \cdot 01$	1.01	$1 \cdot 02$	$1 \cdot 03$	$1 \cdot 00$	1.01	1.01	1.02	1.03
	0.5	0.98	0.99	$1 \cdot 00$	$1 \cdot 01$	1.01	$0 \cdot 99$	1.00	1.00	1×00	1.00	0.98	1.00	1.01	$1 \cdot 03$	1.04	0.99	1.00	1.01	1.04	1.05
	$0 \cdot 7$	0.99	$1 \cdot 03$	1.03	1.05	$1 \cdot 05$	1.01	1.02	1.03	$1 \cdot 05$	1.05	0.99	1.02	1.03	1.06	1.06	$1 \cdot 00$	1.02	1.03 ${ }^{\circ}$	1-06	$1 \cdot 08$
	0.9	$\therefore 1.05$	$1 \cdot 09$	$1 \cdot 11$	$1 \cdot 15$	$1 \cdot 17$	1.07	1.08	$1 \cdot 11$	$1 \cdot 13$	1-16	$1 \cdot 03$	1.06	1.09	$1 \cdot 13$	$1 \cdot 15$ -	1.05	1.07	1.08	$1 \cdot 12$	$1 \cdot 15$
	1.0	$1 \cdot 11$	$1 \cdot 15$	$1 \cdot 20$	$1 \cdot 25$	$1 \cdot 28$	$1 \cdot 13$	$1 \cdot 14$	1•17	$1 \cdot 22$	$1 \cdot 27$	$1 \cdot 08$	$1 \cdot 11$	$1 \cdot 14$	$1 \cdot 18$	$1 \cdot 21$	1.09	$1 \cdot 11$	$1 \cdot 12$	$1 \cdot 17$	$1 \cdot 21$
100	0.0	0.97	0.98	0.97	0.98	0.95	0.99	0.99	0.99	0.99	0.92	0.97	$1 \cdot 00$. 1.03	1.08	$1 \cdot 11$	0.99	1.01	1.04	1-10	$1 \cdot 15$
	0.5	0.93	$0 \cdot 96$	$0 \cdot 97$	$0 \cdot 99$	0.99	0.97	0.98	0.99	$0 \cdot 99$	0.95	0.95	0.98	1.03	1.09	$1 \cdot 13$	0.98	$1 \cdot 00$	1.04	$1 \cdot 11$	$1 \cdot 14$
	0.7	0.93	0.96	0.97	$1 \cdot 00$	1.01	0.97	0.99	0×99	1.00	0.97	0.94	0.98	1.02	$1 \cdot 09$	$1 \cdot 15$	0.98	1.01	1.04	$1 \cdot 10$	$1 \cdot 15$
	0.9	0.93	$0 \cdot 96$	0.98	102	1.06	$0 \cdot 98$	0.99	0.99	1.01	1.01	0.94	0.98	1.03	$1 \cdot 11$	$1 \cdot 17$	$0 \cdot 98$	1.01	1.04	$1 \cdot 11$	$1 \cdot 19$
	1.0	$0 \cdot 92$	$0 \cdot 96$	0.99	$1 \cdot 08$	1.09	$0 \cdot 97$	0.98	1.00	1.02	$1 \cdot 03$	0.94	0.99	1.03	$1 \cdot 12$	$1 \cdot 20$	$0 \cdot 98$	$1 \cdot 01$	$1 \cdot 04$	$1 \cdot 12$	$1 \cdot 20$

REFERENCES

Abraham, T.P., Khosla, R.K. and Kathuria, O.P. (1969) : Some Investigations on the use of successive sampling techniques in pest and disease surveys. Jour. Ind. Soc. Agri. Stat., 21, 43-57.

Eckler, A.R. (1955) : Rotation Sampling. A.M.S., 26, 664-685.
Kathuria, O.P. (1959) : Some Aspects of Successive Sampling in Multi-stage design. Thesis submitted for award of ICAR Diploma (UN-published).

Kathuria, O.P. (1970): Some contributions to two-stage sampling on successive occasions. Submitted for publication in J.A.S.A.

Kathuria, O.P. and Singh, D. (1971): Comparison of Estimates in two-stage sampling on successive occasions. Jour. Ind. Soc. Agri. Stat, 22., 31-51.

Patterson, H.D. (1950) : Sampling on Successive occasions with partial replacement of units, J.R.S.S. Series B, 12, 241-55.

Singh, D. (1968) : Estimates in successive sampling using a multi-stage design,-J.A.S.A., 63, 99-112.

Singh, D. and Kathuria, O.P. (1969) : On two-stage Successive Sampling, Aust. Jour. Stat., 11, 59-66.

Tikkiwal, B.D. (1964): A note on two-stage sampling on successive occasions, Sankhya, Series A, 26, 97-100.

Yates, F. (1960) : Sampling methods for censuses and surveys. Charles Griffin \& Co., Ltd., London.

